"ভাষাকে জানো, AI-কে চেনো!"
(Unlock Bangla's Future with AI)
A next-gen Bangla NLP platform built for:
Category | Tools |
---|---|
Gen-Z Playground | MemeGPT • Slang Translator • AI Rap Generator • Voice Filters • TikTok Content API |
Enterprise NLP | Legal Doc Analyzer • News Sentiment API • Plagiarism Checker • Customer Service Bot • Bangla Data OCR |
Voice Lab | Celebrity Voice Cloning • Regional Accent TTS • Audio Transcription • Dialect Analysis • Emotion Detection |
Real-Time AI | Trend Predictor • Social Media Pulse • Ittefaq News Scanner • Market Sentiment Analysis • Election Opinion Tracker |
Academia | Literature Analysis • Academic Paper Assistant • Educational Content Generator • Bangla Research Corpus |
Security Suite | Bangla Fraud Detection • Phishing Text Analysis • Disinformation Tracker • Financial Alert System |
Role | Hex | Preview |
---|---|---|
Primary | #6A5ACD |
![]() |
Secondary | #FF69B4 |
![]() |
Accent | #00FFE0 |
![]() |
Dark Mode | #1A1A2E |
![]() |
Light Mode | #F5F5F7 |
![]() |
বর্গী বট (Borgi Bot) – Our street-smart AI mascot for Gen-Z campaigns:
# Clone repo
git clone https://github.com/Shobdhonic/core-engine.git
cd core-engine
# Create virtual environment
python -m venv shobdhonic-env
source shobdhonic-env/bin/activate # On Windows: shobdhonic-env\Scripts\activate
# Install dependencies (Python)
pip install -r requirements.txt
# Or for Node.js
npm install
# Set up environment variables
cp .env.example .env
# Edit .env with your API keys
# Build the Docker image
docker build -t shobdhonic:latest .
# Run the container
docker run -p 8000:8000 -v $(pwd):/app --env-file .env shobdhonic:latest
from shobdhonic import MemeMaster
# Initialize with your API key
meme_api = MemeMaster(api_key="your_api_key_here")
# Create a meme with custom text and template
meme = meme_api.create(
text="একটা চা আর হয়না? ☕",
template="cha_kaku",
style="viral", # Options: viral, minimal, dramatic, retro
font="bangla_classic",
format="jpg" # Options: jpg, png, gif, mp4
)
# Save the meme
meme.download("output/cha_kaku_meme.jpg")
# Share directly to social media
meme.share(platform="facebook") # Options: facebook, twitter, instagram, whatsapp
from shobdhonic import VoiceForge
import numpy as np
# Initialize voice engine
voice_api = VoiceForge(api_key="your_api_key_here")
# Clone a voice with emotion parameters
voice = voice_api.clone(
target_voice="bappa_sir", # Popular Bangla YouTuber
text="ভাই, লাইক আর সাবস্ক্রাইব মনে হয়না!",
emotion="excited", # Options: neutral, sad, excited, angry, persuasive
dialect="dhaka", # Options: dhaka, chittagong, sylhet, rajshahi, khulna, barishal
speed=1.2, # Playback speed multiplier (0.5 - 2.0)
pitch_shift=0.3 # Adjust pitch (-1.0 to 1.0)
)
# Play the generated audio
voice.play()
# Save to file
voice.save("output/bappa_youtube_promo.mp3")
# Get waveform data for further processing
waveform = voice.get_waveform()
frequencies = np.fft.fft(waveform)
from shobdhonic import NewsAnalyzer
import pandas as pd
import matplotlib.pyplot as plt
# Initialize news analyzer
news_api = NewsAnalyzer(api_key="your_api_key_here")
# Analyze recent articles
results = news_api.analyze(
source="prothom_alo", # Options: prothom_alo, ittefaq, bangla_tribune, bbc_bangla
category="politics", # Options: politics, business, sports, entertainment, tech
date_range="last_7_days", # Options: today, last_24h, last_7_days, last_30_days, custom
sample_size=100 # Number of articles to analyze
)
# Get sentiment breakdown
sentiment_df = pd.DataFrame(results.sentiment_data)
# Plot results
plt.figure(figsize=(10, 6))
plt.bar(sentiment_df['sentiment'], sentiment_df['percentage'])
plt.title('Political News Sentiment Analysis')
plt.xlabel('Sentiment')
plt.ylabel('Percentage (%)')
plt.savefig('output/sentiment_analysis.png')
from shobdhonic import DocumentProcessor
from shobdhonic.security import SensitiveDataDetector
# Initialize document processor
doc_api = DocumentProcessor(api_key="your_api_key_here")
# Process legal document
processed_doc = doc_api.process(
file_path="contracts/agreement.pdf",
tasks=[
"summarize", # Create executive summary
"extract_entities", # Find people, organizations, dates
"identify_clauses", # Detect important legal clauses
"risk_assessment" # Flag potentially problematic terms
],
output_format="json"
)
# Check for sensitive information
sensitive_detector = SensitiveDataDetector()
security_scan = sensitive_detector.scan(processed_doc.raw_text)
if security_scan.has_sensitive_data:
print(f"WARNING: Found {len(security_scan.findings)} instances of sensitive data")
for finding in security_scan.findings:
print(f"- {finding.type}: {finding.severity} risk level")
# Export processed results
processed_doc.export(
output_path="output/processed_contract.json",
include_metadata=True,
redact_sensitive=True
)
shobdhonic.tokenizer
: Advanced Bangla tokenizationshobdhonic.transformer
: Pre-trained transformer modelsshobdhonic.nlp
: Natural language processing utilitiesshobdhonic.generator
: Text generation capabilitiesshobdhonic.translator
: Cross-language translation servicesshobdhonic.voice
: Text-to-speech and speech-to-textshobdhonic.audio
: Audio processing utilitiesshobdhonic.dialect
: Regional dialect processingshobdhonic.meme
: Meme generation engineshobdhonic.social
: Social media integrationshobdhonic.content
: Content creation assistantsshobdhonic.video
: Video generation and editingshobdhonic.sentiment
: Sentiment analysis toolsshobdhonic.analytics
: Usage statistics and reportingshobdhonic.trends
: Trend detection and predictionshobdhonic.security
: Security and compliance toolsshobdhonic.enterprise
: Enterprise integration utilitiesshobdhonic.docs
: Document processing pipelineTask | Shôbdhonic | Other Bangla NLP | Improvement |
---|---|---|---|
Text Classification | 94.7% | 88.2% | +6.5% |
Named Entity Recognition | 92.3% | 85.9% | +6.4% |
Sentiment Analysis | 89.8% | 81.3% | +8.5% |
Question Answering | 87.6% | 79.1% | +8.5% |
Text Generation (BLEU) | 0.731 | 0.658 | +11.1% |
Speech Recognition (WER) | 6.4% | 11.7% | -5.3% (better) |
Text-to-Speech (MOS) | 4.52/5 | 3.87/5 | +16.8% |
Benchmarks conducted using standard Bangla test sets and industry metrics. Full methodology available in our technical paper.
// Using fetch in JavaScript
const fetchMeme = async () => {
const response = await fetch('https://api.shobdhonic.com/v1/create-meme', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer YOUR_API_KEY'
},
body: JSON.stringify({
text: 'পরীক্ষার রেজাল্ট দেখার পর আমি',
template: 'sad_pepe',
format: 'jpg'
})
});
const data = await response.json();
return data.meme_url;
};
// Call the function
fetchMeme().then(url => {
document.getElementById('meme-image').src = url;
});
from shobdhonic import ShobdhonicClient
import asyncio
async def main():
# Initialize client
client = ShobdhonicClient(api_key="YOUR_API_KEY")
# Use the sentiment analysis API
result = await client.analyze_sentiment(
text="এই সিনেমাটা দেখে আমি খুবই মুগ্ধ হয়েছি।",
detailed=True
)
print(f"Overall sentiment: {result.sentiment}")
print(f"Confidence score: {result.confidence:.2f}")
print(f"Emotional breakdown: {result.emotions}")
# Use the translation API
translation = await client.translate(
text="আমি বাংলায় কথা বলতে পারি।",
target_language="en"
)
print(f"Translation: {translation.text}")
print(f"Source language detected: {translation.source_language}")
# Run the async function
asyncio.run(main())
from flask import Flask, request, jsonify
import hmac
import hashlib
app = Flask(__name__)
@app.route('/webhook/shobdhonic', methods=['POST'])
def shobdhonic_webhook():
# Verify the webhook signature
signature = request.headers.get('X-Shobdhonic-Signature')
secret = 'your_webhook_secret'
computed_signature = hmac.new(
secret.encode('utf-8'),
request.data,
hashlib.sha256
).hexdigest()
if not hmac.compare_digest(signature, computed_signature):
return jsonify({'error': 'Invalid signature'}), 401
# Process the webhook data
data = request.json
event_type = data.get('event_type')
if event_type == 'sentiment_alert':
handle_sentiment_alert(data)
elif event_type == 'content_moderation':
handle_content_moderation(data)
elif event_type == 'trend_detected':
handle_trend_detection(data)
return jsonify({'status': 'success'}), 200
def handle_sentiment_alert(data):
# Process sentiment alerts
pass
def handle_content_moderation(data):
# Process content moderation events
pass
def handle_trend_detection(data):
# Process trend detection events
pass
if __name__ == '__main__':
app.run(debug=True, port=5000)
shobdhonic/
├── api/ # API endpoints
├── cli/ # Command-line tools
├── core/ # Core functionality
│ ├── models/ # ML models
│ ├── processors/ # Text processors
│ ├── tokenizers/ # Bangla tokenizers
│ └── vectors/ # Word embeddings
├── data/ # Data handling
│ ├── corpus/ # Text corpora
│ ├── loaders/ # Data loaders
│ └── scrapers/ # Web scrapers
├── media/ # Media generation
│ ├── audio/ # Audio processing
│ ├── images/ # Image generation
│ └── video/ # Video processing
├── security/ # Security tools
├── services/ # External services
├── ui/ # User interfaces
│ ├── web/ # Web interface
│ ├── mobile/ # Mobile interface
│ └── widgets/ # Embeddable widgets
├── utils/ # Utility functions
└── tests/ # Test suite
# Clone the development repository
git clone https://github.com/Shobdhonic/shobdhonic-dev.git
cd shobdhonic-dev
# Create development environment
python -m venv dev-env
source dev-env/bin/activate
# Install development dependencies
pip install -r requirements-dev.txt
# Set up pre-commit hooks
pre-commit install
# Run all tests
pytest
# Run specific test category
pytest tests/test_tokenizers.py
# Run with coverage report
pytest --cov=shobdhonic --cov-report=html
# Generate API documentation
cd docs
make html
# View documentation
python -m http.server -d _build/html
Our continuous integration and deployment pipeline automatically:
We welcome contributions from the community! Here's how to get started:
good-first-issue
, help-wanted
, or Gen-Z feature
All contributors are expected to adhere to our Code of Conduct which promotes a welcoming, inclusive, and harassment-free experience for everyone.
Complete API documentation is available at docs.shobdhonic.com
Step-by-step tutorials for common tasks:
Explore our examples directory for complete code samples:
MIT License | © 2024 Shôbdhonic
*Bangla Data Ethics Pledge:*
- No misuse of dialects/regional languages
- Cite sources like Ittefaq/Prothom Alo
- Free access for academic research and non-profits/NGOs
- Respecting privacy and data sovereignty
- Preserving Bangla linguistic diversity
At Shôbdhonic, we commit to:
Our complete AI Ethics Policy is available here.
Our team publishes open research on Bangla NLP:
Interested in research collaboration? Contact us at research@shobdhonic.com
মহাযুদ্ধ বাংলা ভাষার, আমরা প্রস্তুত!
Powered by রক্তে বাংলা, প্রযুক্তিতে Shôbdhonic