Shôbdhonic Logo

শব্দনিক | Shôbdhonic

বাংলা NLP-এর নতুন যুগ

"ভাষাকে জানো, AI-কে চেনো!"
(Unlock Bangla's Future with AI)

Website Discord Twitter Telegram GitHub HuggingFace


🚀 Why Shôbdhonic?

A next-gen Bangla NLP platform built for:


Key Features

Category Tools
Gen-Z Playground MemeGPTSlang TranslatorAI Rap GeneratorVoice FiltersTikTok Content API
Enterprise NLP Legal Doc AnalyzerNews Sentiment APIPlagiarism CheckerCustomer Service BotBangla Data OCR
Voice Lab Celebrity Voice CloningRegional Accent TTSAudio TranscriptionDialect AnalysisEmotion Detection
Real-Time AI Trend PredictorSocial Media PulseIttefaq News ScannerMarket Sentiment AnalysisElection Opinion Tracker
Academia Literature AnalysisAcademic Paper AssistantEducational Content GeneratorBangla Research Corpus
Security Suite Bangla Fraud DetectionPhishing Text AnalysisDisinformation TrackerFinancial Alert System

🎯 Core Technologies

Models Architecture

Data Processing Pipeline


🎨 Brand Identity

Colors

Role Hex Preview
Primary #6A5ACD #6A5ACD
Secondary #FF69B4 #FF69B4
Accent #00FFE0 #00FFE0
Dark Mode #1A1A2E #1A1A2E
Light Mode #F5F5F7 #F5F5F7

Mascot

বর্গী বট (Borgi Bot) – Our street-smart AI mascot for Gen-Z campaigns:
Borgi Bot


Quick Start

Prerequisites

Installation

# Clone repo
git clone https://github.com/Shobdhonic/core-engine.git
cd core-engine

# Create virtual environment
python -m venv shobdhonic-env
source shobdhonic-env/bin/activate  # On Windows: shobdhonic-env\Scripts\activate

# Install dependencies (Python)
pip install -r requirements.txt

# Or for Node.js
npm install

# Set up environment variables
cp .env.example .env
# Edit .env with your API keys

Docker Setup

# Build the Docker image
docker build -t shobdhonic:latest .

# Run the container
docker run -p 8000:8000 -v $(pwd):/app --env-file .env shobdhonic:latest

Generate Your First Meme

from shobdhonic import MemeMaster

# Initialize with your API key
meme_api = MemeMaster(api_key="your_api_key_here")

# Create a meme with custom text and template
meme = meme_api.create(
    text="একটা চা আর হয়না? ☕", 
    template="cha_kaku",
    style="viral",  # Options: viral, minimal, dramatic, retro
    font="bangla_classic",
    format="jpg"  # Options: jpg, png, gif, mp4
)

# Save the meme
meme.download("output/cha_kaku_meme.jpg")

# Share directly to social media
meme.share(platform="facebook")  # Options: facebook, twitter, instagram, whatsapp

Advanced Voice Cloning

from shobdhonic import VoiceForge
import numpy as np

# Initialize voice engine
voice_api = VoiceForge(api_key="your_api_key_here")

# Clone a voice with emotion parameters
voice = voice_api.clone(
    target_voice="bappa_sir",  # Popular Bangla YouTuber
    text="ভাই, লাইক আর সাবস্ক্রাইব মনে হয়না!",
    emotion="excited",  # Options: neutral, sad, excited, angry, persuasive
    dialect="dhaka",    # Options: dhaka, chittagong, sylhet, rajshahi, khulna, barishal
    speed=1.2,          # Playback speed multiplier (0.5 - 2.0)
    pitch_shift=0.3     # Adjust pitch (-1.0 to 1.0)
)

# Play the generated audio
voice.play()

# Save to file
voice.save("output/bappa_youtube_promo.mp3")

# Get waveform data for further processing
waveform = voice.get_waveform()
frequencies = np.fft.fft(waveform)

News Sentiment Analysis

from shobdhonic import NewsAnalyzer
import pandas as pd
import matplotlib.pyplot as plt

# Initialize news analyzer
news_api = NewsAnalyzer(api_key="your_api_key_here")

# Analyze recent articles
results = news_api.analyze(
    source="prothom_alo",     # Options: prothom_alo, ittefaq, bangla_tribune, bbc_bangla
    category="politics",       # Options: politics, business, sports, entertainment, tech
    date_range="last_7_days",  # Options: today, last_24h, last_7_days, last_30_days, custom
    sample_size=100            # Number of articles to analyze
)

# Get sentiment breakdown
sentiment_df = pd.DataFrame(results.sentiment_data)

# Plot results
plt.figure(figsize=(10, 6))
plt.bar(sentiment_df['sentiment'], sentiment_df['percentage'])
plt.title('Political News Sentiment Analysis')
plt.xlabel('Sentiment')
plt.ylabel('Percentage (%)')
plt.savefig('output/sentiment_analysis.png')

Enterprise Document Processing

from shobdhonic import DocumentProcessor
from shobdhonic.security import SensitiveDataDetector

# Initialize document processor
doc_api = DocumentProcessor(api_key="your_api_key_here")

# Process legal document
processed_doc = doc_api.process(
    file_path="contracts/agreement.pdf",
    tasks=[
        "summarize",           # Create executive summary
        "extract_entities",     # Find people, organizations, dates
        "identify_clauses",     # Detect important legal clauses
        "risk_assessment"       # Flag potentially problematic terms
    ],
    output_format="json"
)

# Check for sensitive information
sensitive_detector = SensitiveDataDetector()
security_scan = sensitive_detector.scan(processed_doc.raw_text)

if security_scan.has_sensitive_data:
    print(f"WARNING: Found {len(security_scan.findings)} instances of sensitive data")
    for finding in security_scan.findings:
        print(f"- {finding.type}: {finding.severity} risk level")

# Export processed results
processed_doc.export(
    output_path="output/processed_contract.json",
    include_metadata=True,
    redact_sensitive=True
)

🔋 Core Modules

Text Processing

Audio & Speech

Media & Content

Analysis & Intelligence

Security & Enterprise


📈 Performance Benchmarks

Task Shôbdhonic Other Bangla NLP Improvement
Text Classification 94.7% 88.2% +6.5%
Named Entity Recognition 92.3% 85.9% +6.4%
Sentiment Analysis 89.8% 81.3% +8.5%
Question Answering 87.6% 79.1% +8.5%
Text Generation (BLEU) 0.731 0.658 +11.1%
Speech Recognition (WER) 6.4% 11.7% -5.3% (better)
Text-to-Speech (MOS) 4.52/5 3.87/5 +16.8%

Benchmarks conducted using standard Bangla test sets and industry metrics. Full methodology available in our technical paper.


📊 Enterprise Solutions

Banking & Finance

Media & Publishing

Education

Government & NGOs


💻 API Integration

REST API Example

// Using fetch in JavaScript
const fetchMeme = async () => {
  const response = await fetch('https://api.shobdhonic.com/v1/create-meme', {
    method: 'POST',
    headers: {
      'Content-Type': 'application/json',
      'Authorization': 'Bearer YOUR_API_KEY'
    },
    body: JSON.stringify({
      text: 'পরীক্ষার রেজাল্ট দেখার পর আমি',
      template: 'sad_pepe',
      format: 'jpg'
    })
  });
  
  const data = await response.json();
  return data.meme_url;
};

// Call the function
fetchMeme().then(url => {
  document.getElementById('meme-image').src = url;
});

Python SDK Example

from shobdhonic import ShobdhonicClient
import asyncio

async def main():
    # Initialize client
    client = ShobdhonicClient(api_key="YOUR_API_KEY")
    
    # Use the sentiment analysis API
    result = await client.analyze_sentiment(
        text="এই সিনেমাটা দেখে আমি খুবই মুগ্ধ হয়েছি।",
        detailed=True
    )
    
    print(f"Overall sentiment: {result.sentiment}")
    print(f"Confidence score: {result.confidence:.2f}")
    print(f"Emotional breakdown: {result.emotions}")
    
    # Use the translation API
    translation = await client.translate(
        text="আমি বাংলায় কথা বলতে পারি।",
        target_language="en"
    )
    
    print(f"Translation: {translation.text}")
    print(f"Source language detected: {translation.source_language}")

# Run the async function
asyncio.run(main())

Webhook Integration

from flask import Flask, request, jsonify
import hmac
import hashlib

app = Flask(__name__)

@app.route('/webhook/shobdhonic', methods=['POST'])
def shobdhonic_webhook():
    # Verify the webhook signature
    signature = request.headers.get('X-Shobdhonic-Signature')
    secret = 'your_webhook_secret'
    
    computed_signature = hmac.new(
        secret.encode('utf-8'),
        request.data,
        hashlib.sha256
    ).hexdigest()
    
    if not hmac.compare_digest(signature, computed_signature):
        return jsonify({'error': 'Invalid signature'}), 401
    
    # Process the webhook data
    data = request.json
    event_type = data.get('event_type')
    
    if event_type == 'sentiment_alert':
        handle_sentiment_alert(data)
    elif event_type == 'content_moderation':
        handle_content_moderation(data)
    elif event_type == 'trend_detected':
        handle_trend_detection(data)
    
    return jsonify({'status': 'success'}), 200

def handle_sentiment_alert(data):
    # Process sentiment alerts
    pass

def handle_content_moderation(data):
    # Process content moderation events
    pass

def handle_trend_detection(data):
    # Process trend detection events
    pass

if __name__ == '__main__':
    app.run(debug=True, port=5000)

🧩 Project Structure

shobdhonic/
├── api/                # API endpoints
├── cli/                # Command-line tools
├── core/               # Core functionality
│   ├── models/         # ML models
│   ├── processors/     # Text processors
│   ├── tokenizers/     # Bangla tokenizers
│   └── vectors/        # Word embeddings
├── data/               # Data handling
│   ├── corpus/         # Text corpora
│   ├── loaders/        # Data loaders
│   └── scrapers/       # Web scrapers
├── media/              # Media generation
│   ├── audio/          # Audio processing
│   ├── images/         # Image generation
│   └── video/          # Video processing
├── security/           # Security tools
├── services/           # External services
├── ui/                 # User interfaces
│   ├── web/            # Web interface
│   ├── mobile/         # Mobile interface
│   └── widgets/        # Embeddable widgets
├── utils/              # Utility functions
└── tests/              # Test suite

🛠️ Development Workflow

Setting Up Development Environment

# Clone the development repository
git clone https://github.com/Shobdhonic/shobdhonic-dev.git
cd shobdhonic-dev

# Create development environment
python -m venv dev-env
source dev-env/bin/activate

# Install development dependencies
pip install -r requirements-dev.txt

# Set up pre-commit hooks
pre-commit install

Running Tests

# Run all tests
pytest

# Run specific test category
pytest tests/test_tokenizers.py

# Run with coverage report
pytest --cov=shobdhonic --cov-report=html

Building Documentation

# Generate API documentation
cd docs
make html

# View documentation
python -m http.server -d _build/html

CI/CD Pipeline

Our continuous integration and deployment pipeline automatically:

  1. Runs tests on all pull requests
  2. Performs code quality checks
  3. Builds and publishes packages on releases
  4. Deploys to staging/production environments
  5. Updates documentation site

🤝 Contribute to Bangla AI

We welcome contributions from the community! Here's how to get started:

  1. Fork the Repository: GitHub/Shobdhonic
  2. Pick an Issue: Look for issues labeled good-first-issue, help-wanted, or Gen-Z feature
  3. Set Up Your Environment: Follow the development setup instructions above
  4. Make Your Changes: Write code and tests for your feature or fix
  5. Submit a Pull Request: Follow our Contribution Guidelines

Areas We Need Help With

Contributor Code of Conduct

All contributors are expected to adhere to our Code of Conduct which promotes a welcoming, inclusive, and harassment-free experience for everyone.


📒 Documentation

API Reference

Complete API documentation is available at docs.shobdhonic.com

Tutorials

Step-by-step tutorials for common tasks:

Examples

Explore our examples directory for complete code samples:


📜 License & Ethics

MIT License | © 2024 Shôbdhonic  

*Bangla Data Ethics Pledge:*  
- No misuse of dialects/regional languages  
- Cite sources like Ittefaq/Prothom Alo  
- Free access for academic research and non-profits/NGOs  
- Respecting privacy and data sovereignty
- Preserving Bangla linguistic diversity

Ethical AI Commitment

At Shôbdhonic, we commit to:

Our complete AI Ethics Policy is available here.


🧪 Research

Our team publishes open research on Bangla NLP:

Interested in research collaboration? Contact us at research@shobdhonic.com


🌐 Connect

Hugging Face
YouTube
LinkedIn
Medium Discord


মহাযুদ্ধ বাংলা ভাষার, আমরা প্রস্তুত!
Powered by রক্তে বাংলা, প্রযুক্তিতে Shôbdhonic